
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2010; 62:1047–1062
Published online 20 April 2009 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.2061

Sensitivity of shear rate in artificial grafts using automatic
differentiation

M. Probst1,∗,†, M. Lülfesmann2, H. M. Bücker2, M. Behr1 and C. H. Bischof2
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SUMMARY

An accurate numerical simulation of blood requires the solution of incompressible Navier–Stokes
equations coupled with specific constitutive models. We consider a generalized Newtonian fluid model
in which viscosity depends on shear rate, accounting for the shear-thinning behavior of blood. Previous
work on the design of an artificial graft indicated that there is an influence of the fluid model on the
solution of the partial differential equation-constrained shape optimization problem. Therefore, we carry
out a sensitivity analysis of the actual implementation of the flow solver using automatic differentiation
(AD). We compare the sensitivities of shear rate with respect to viscosity for different configurations and
validate the truncation-error-free sensitivities obtained from AD with those based on divided differencing
and, if available, with analytic derivatives. Copyright q 2009 John Wiley & Sons, Ltd.

Received 21 September 2008; Revised 23 February 2009; Accepted 26 February 2009

KEY WORDS: sensitivity analysis; automatic differentiation; blood flow; shear-thinning model; shape
optimization

1. INTRODUCTION

The World Health Organization (WHO) reports cardiovascular diseases as number one cause of
deaths worldwide. In 2002, 12.7 million people died from heart disease or strokes, which accounts
for an estimated 23% of all deaths. Occlusion and stenosis of arterial blood vessels inhibit regular
blood flow and cause elevated shear stress and recirculation favoring further deposition, and, thus,
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have major effects on many of the diseases categorized as heart disease. Blood flow can be restored
by either stenting or placing a bypass around the occlusion.

Later stages of heart disease often leave implantation of ventricular assist devices (VADs),
which support the heart in maintaining sufficient blood flow, as the only temporary cure until a
donor organ becomes available for transplantation. In both artificial grafts and VADs not only
blood clotting, but also red blood cell (RBC) damage is a major concern. Exposure of RBCs
to high stresses initiates the release of hemoglobin from the cells into the blood stream. This
process—called hemolysis—can lead to toxic effects and, ultimately, organ failure when the free
hemoglobin exceeds the amount that can be filtered by the kidneys.

Various attempts have been made to find a correlation between flow conditions and hemolysis
that allows to assess overall blood damage in medical devices [1–3]. Since blood is a complex fluid
showing viscoelastic behavior, considerable effort has been put into studies that investigate how
the choice of different constitutive models for blood affects the computed flow field in numerical
simulations [4–7]. More recently, Abraham [8] combined both aspects and studied the effects of
different fluid models on the shape of artificial bypass grafts when these were optimized with the
objective of minimizing hemolysis. The resulting optimal shapes were dependent on the fluid model,
as briefly summarized in Section 3.1, which is the motivation behind the work presented here.

The aforementioned results suggest to compute sensitivities with respect to the fluid model and
identify in advance scenarios in which complex models for blood are required. Eventually, our goal
is to obtain sensitivity of optimal shapes. Computing and implementing these analytically can be
tedious since it involves differentiating all software components. Automatic differentiation (AD)
provides a reliable and effective alternative to the analytic approach. As a first step toward our
goal, we transform the essential component of the objective function—the flow solver—using AD
in order to obtain the sensitivity of the flow field and related quantities with respect to viscosity.
We state the equations governing the flow and briefly comment on constitutive models for blood
in Section 2. Section 3 gives a perspective on simulation and optimization of artery and bypass
geometries and the sensitivity study of inherent parameters. This is followed in Section 4 by a short
introduction on the solver and a brief description of the AD techniques used to transform the flow
solver. In Section 5, the resulting sensitivities are validated against analytic values for a simple
test case and sensitivities for the bypass graft are presented. Lastly, we summarize our results.

2. GOVERNING EQUATIONS OF BLOOD FLOW

For the remainder of this paper, we will be dealing with blood flow that is governed by
incompressible Navier–Stokes equations

�

(
�u
�t

+u·∇u−f
)

−∇ ·r=0 (1)

∇·u=0 (2)

where r is the stress tensor, � is density and f denotes external forces. The stress tensor is
composed of isostatic components acting in normal direction and viscous components acting in
the shear plane. For Newtonian fluids, i.e. fluids with constant viscosity, this can be written as
r=−pI+2�e(u) where the rate of strain tensor e(u) is the symmetric part of the velocity gradient
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and I is the identity tensor. In many situation it can be crucial how unique properties of blood are
built into the model because of their nonnegligible influence on the flow field.

2.1. Constitutive models for blood

Owing to its three main constituents—RBCs, white blood cells and platelets—blood is a highly
complex fluid requiring intricate constitutive models for accurate simulations. However, it can be
treated as Newtonian fluid in some cases that involve high shear rates [4]. A compromise between
the use of this simplification and the treatment of blood as a complex, viscoelastic fluid is the
use of generalized Newtonian models where viscosity depends on shear rate, thus accounting
for shear-thinning behavior of blood without the need to solve additional equations that model
viscoelastic behavior. The shear rate is related to the second invariant of the rate of strain tensor,
and, therefore, it can be directly obtained from the flow field as

�̇=√
2e(u) :e(u) (3)

where the colon operator denotes tensor inner product.
A frequently used generalized Newtonian model is the modified Cross model where the relation

of dynamic viscosity � and shear rate �̇ is given by

�(�̇)=�∞+ �0−�∞
(1+(��̇)b)a

(4)

The symbols �0 and �∞ denote zero- and infinite-shear limit viscosity that, in combination with
parameters �, a and b, are used to adjust the model to a specific material or fluid. Following [6],
a suitable choice to model human blood is �0=1.6 ·10−1 Pas,�∞ =3.5 ·10−3 Pas,a=1.23,
b=0.64 and �=8.2s.

From here on, we will exclusively use kinematic viscosity that is obtained by simply dividing
dynamic viscosity by density. Based on the infinite-shear limit viscosity and blood density
�=1.057kg/l, the corresponding kinematic viscosity is found to be �=3.31 ·10−2 cm2s−1. For
simplicity, we will keep writing p for kinematic pressure. The influence of the constitutive model
in shape optimization will be discussed in Section 3 where a comparison of optimal bypass graft
shapes for Newtonian and modified Cross constitutive model is presented.

2.2. Analytic solution for steady flow in 2D

Under certain assumptions, it is possible to obtain an analytic expression for the state variables in
(1)–(2), i.e. velocity and pressure. For example, consider steady flow in a 2D rectangular domain
where a parabolic profile is prescribed along the inflow boundary and a noslip condition is imposed
on the adjacent edges. The continuity equation (2) will be satisfied by any flow profile that depends
on one coordinate only and, thus, holds in particular for 2D parabolic flow. Furthermore, time-
dependent and advection terms vanish in (1). Assuming that there are no external forces present,
the momentum equation reduces to steady Stokes equation for the stress tensor

−∇ ·r=0 (5)

Note that despite using kinematic viscosity, we still write r and p, respectively, for stress and
pressure divided by density. The first component of the 2D parabolic velocity profile has the form
u(y)=uc y (ȳ− y) where ȳ denotes the domain extent in y-direction and the maximum velocity
is given by umax= 1

4 ȳ
2uc.
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When taking the divergence of the rate of strain tensor in steady Stokes equation, almost all
second-order derivatives vanish and the 2D system reduces to one equation,

�2u
�y2

= 1

�

�p
�x

(6)

In pressure-driven flow, the pressure slope will depend on the specified pressure drop pd=
p(0)− p(x̄)=−(�p/�x)x̄ with x̄ denoting the length of the domain in x-direction. The parameter
uc in the parabolic inflow profile depends on the pressure drop and the domain extents and the
solution of (6) is

u = u(y)= ȳ

2x̄

pd
�
y(ȳ− y)

p = p(x)=C0− pd
x̄
x

(7)

with some constant C0.

3. SHAPE OPTIMIZATION FOR ARTERIAL BYPASS GRAFTS

Computer-aided design has become common practice in many engineering applications. Classic
applications include airfoil and automotive design. Numerical simulations of blood flow in arteries
and medical devices have been used for many years to improve the understanding of cardiovascular
disease and to develop efficient treatment. Because of their relatively simple geometry, bypass
grafts have been the focus of many studies, and numerical results have been validated against
experimental data collected in clinical practice [9, 10]. A recent review on flow simulation in
arterial bypass and arteriovenous grafts is found in [11].

In shape optimization of grafts, several authors pointed out the influence of graft-to-artery angle
and diameter as crucial design parameters. However, most of these studies aim to find an optimal
configuration in a discrete, limited range of design alternatives [12, 13]. Only recently, approaches
to mathematical optimization have been pursued. Optimization strategies include derivative-free
methods using a surrogate model of the objective function [14, 15] and gradient-based methods
that rely on the solution of adjoint equations [16, 17].

As previously mentioned, the choice of the constitutive model affects the results of numerical
simulations. Abraham [8] showed that shape optimization results might depend on the constitutive
model as well. This result motivates the sensitivity analysis carried out in this paper. We therefore
briefly summarize the observations relevant to our analysis.

3.1. Sensitivity of optimal shapes

Abraham [8] reports on a 2D optimization framework that was used to optimize the shape of
artificial bypass grafts that are placed in stenosed arteries to restore blood flow around the occlusion.
Figure 1 shows the initial setup. Optimization of the centerline design curve was performed
for two different diameters d of this idealized graft—narrow bypass (d=0.6) and wide bypass
(d=1.0). Two different inflow conditions were imposed, adjusting the parabolic inflow profile so
that associated Reynolds numbers were 50 and 300, respectively.
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Figure 1. Computational domain for the arterial graft. The initial shape of the design curve
of the graft (dashed line) is a semi-circle with center at C . Fixed geometry parameters are
l1=6.0, l2=3.0, l3+d=2.5. The downstream section of the host artery is symmetric with respect to the

upstream one, both have a height of 0.8.

Figure 2. Graft diameter d=1.0. Comparison of initial and optimal center line shapes for
different Reynolds numbers, and Newtonian and modified Cross (MC) constitutive models.

Optimal design parameters taken from [8].

Shape optimization of the graft aims to minimize hemolysis, which has been found to be
correlated to exposure time and shear stress [1]. Abraham takes this into account by choosing the
objective functional to be the integral over squared shear rate

J (u,a)=
∫
X(a)

�̇2 dx (8)

In this integral, X represents the graft shape and design variables a are coefficients of a fifth-order
polynomial parameterizing the bypass’ center line r(�).

In the previously described setting, Abraham investigated the influence of the constitutive fluid
model on the optimization outcome. Starting from the initial shape, the design variables that
minimize the objective function (8) were computed at both Reynolds numbers. First, blood was
treated as Newtonian fluid using constant viscosity in the forward solution of Navier–Stokes
equations (1)–(2). Then, the optimization was repeated using the modified Cross constitutive
model (4). For the wide bypass, resulting optimized center line shapes for these four different
cases are compared in Figure 2.

While for the low Reynolds number no significant influence of the constitutive model on the
optimal shape was observed, there is a clearly visible impact for the high Reynolds number.
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That is, the optimal shape of the wide graft is sensitive to viscosity variation at Re=300.
In contrast, for Re=50 and for the narrow graft (results are not shown here) at both flow conditions,
sensitivity was marginal. A sensitivity analysis could possibly confirm this result and, even more
importantly, could have predicted the elevated sensitivity for the wide bypass at high Reynolds
number beforehand.

4. COMPUTATIONAL FRAMEWORK

4.1. The flow solver XNS

As a first step toward derivatives of optimal shapes with respect to parameters that enter the simu-
lation process, we focus on the flow solver that provides the forward solution in the optimization.
The solver used here is an in-house research code called XNS.

XNS is a highly-parallel finite element solver that is portable and has been tested on a wide
range of systems with different architectures. The scalability of the code has been shown to be
satisfactory on up to 4096 processors on a Blue Gene/L system using message passing interface
(MPI) parallelization [18]. MPI calls are wrapped in an in-house communication library that
supports protocols other than MPI as well. XNS uses a stabilized space–time Galerkin/least-
squares discretization that allows the use of equal-order linear interpolation. A Krylov subspace
method is employed to solve the resulting system of linear equations. The implementation
includes various types of equations prevalent in computational fluid dynamics practice: advection–
diffusion processes, shallow-water equations, and compressible and incompressible Navier–Stokes
equations. Areas of application include diffusion of chemicals, flow around submarine and ship
propulsion systems, air flow around a helicopter, flows in spillways and channels, and tidal
flows in the Tokyo bay. Furthermore, XNS is able to model viscoelastic fluids such as blood
and features special mesh update techniques to accommodate deforming and rotating parts of the
computational domain.

4.2. Code transformation by AD

For a given viscosity �, the forward simulation carried out by XNS solves the Navier–Stokes
equations (1)–(2) and computes velocity and pressure values for each node in the computational
domain. The shear rate �̇ is constant on each element and is directly related to the velocity field
through Equation (3).

From an abstract point of view, the execution of XNS in this particular scenario represents
the evaluation of some mathematical function �̇= f (�). The term AD [19, 20] refers to a set of
techniques to mechanically generate, from a computer program computing f , a new computer
program for the computation of the derivative f ′. Thus, AD can be used to transform the
forward code XNS into a new code capable of computing derivatives ��̇/��. The idea behind
this technology is to systematically apply the chain rule of differential calculus to every elemen-
tary operation. More precisely, suppose that the code to be transformed contains a statement
of the form

z=�(x, y)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:1047–1062
DOI: 10.1002/fld



SENSITIVITY OF SHEAR RATE IN ARTIFICIAL GRAFTS 1053

implementing a binary elementary operation, �, available in a programming language, for instance,
multiplication of two scalar real values, x and y. Then, the so-called forward mode of AD, when
used to compute derivatives with respect to viscosity �, generates a new statement implementing

dz

d�
= ��(x, y)

�x
dx

d�
+ ��(x, y)

�y
dy

d�

The new statement is immediately preceding the original statement with which it is associated.
In practice, each statement is decomposed into a sequence of elementary operations to which the
chain rule is applied repeatedly. As a simple example, consider � to stand for multiplication of
two scalar real values and consider the statement

z = x*y*z

involving two multiplication operations �. Then, the AD forward mode transforms the given code
fragment into the new code fragment

g_z = y*z*g_x + x*z*g_y + x*y*g_z
z = x*y*z

where g z is a new variable used to store dz/d� and the new variables g x and g y are interpreted
analogously. Transforming every statement of the original code in this way and starting with
the known value d�/d�=1, the sensitivity with respect to � is carried forward along with the
computation implemented in the original code. Thus, the new code to compute ��̇/�� is generated
mechanically by using the chain rule and the known partial derivatives of a finite set of elementary
operations. Sophisticated AD transformations take care of data dependencies to keep track of which
variable influences another variable. The process of finding out whether a variable is influenced
by viscosity and has an influence on shear rate is called data dependence analysis and is useful to
increase the performance of the AD-generated code.

There are different AD techniques going beyond the forward mode due to the associativity of the
chain rule of differential calculus. In exact arithmetic, these techniques compute the same result,
but may differ dramatically in terms of storage requirement and computing time. The successful
use of these technologies in a wide range of application areas is reported, for example, in the
proceedings of the international AD workshops [21–25]. Software tools implementing AD for
various languages are listed at the community portal www.autodiff.org.

Rather than applying AD in a black-box fashion to XNS, we take advantage of its code structure
in a so-called hierarchical way [26–29]. Hierarchical AD approaches are used not only to improve
the performance of the AD-generated code but also to more precisely control its behavior. Here,
the code for the solution of linear and nonlinear systems is transformed in a hierarchical way. In
XNS, the solution of a system of linear equations

Au=b (9)

with large sparse nonsingular nonsymmetric coefficient matrix A and right-hand side b is carried
out by an iterative Krylov solver [30]. In a hierarchical AD approach, the code implementing the
Krylov solver is not transformed explicitly as in a black-box AD approach. The hierarchical idea
is based on differentiating (9) with respect to viscosity � leading to

A
�u
��

= �b
��

− �A
��

u
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Thus, compared with (9), the sensitivity �u/�� is obtained by solving a linear system with the
same coefficient matrix A and a new right-hand side whose different terms are available in the AD
forward mode. That is, differentiation is applied on a higher level of abstraction by gluing together
existing pieces of code into a template for the differentiation of a linear solver; see [28, 29, 31] for
more details on differentiation of linear solvers in a hierarchical way.

During the numerical solution of the Navier–Stokes equations, the resulting nonlinear system
is solved iteratively. The code generated in a black-box fashion by AD then involves an iteration
for the derivatives with respect to viscosity. Without manual intervention, the AD-generated code
will stop this iteration as soon as the stopping criterion of the nonlinear iteration used in original
code is fulfilled. However, the convergence of the iterative scheme in the original code does not
generally imply the convergence of the corresponding scheme in the derivative code at the same
iteration number. Rather, the rate of convergence of the derivative iteration tends to be lower than
that of the original iteration. Therefore, there is need to manually introduce a separate stopping
criterion for the derivative iteration. In our implementation, we adopt the stopping criterion for
the original iteration that stops if the differences to the previous iteration become smaller than a
threshold 	. That is, the derivative iteration is stopped when the differences in the derivatives are
less than the same threshold 	.

From a practical point of view, the complexity of the AD transformation process depends on
the programming language. A programming language that offers a high level of sophisticated
language features tends to be more challenging for an AD tool than a language involving only a
small set of simple language constructs. In addition, the AD transformation of programs involving
constructs from different languages is not easily automated [32]. XNS is written primarily in
Fortran. However, there are some programming constructs going beyond pure Fortran. In particular,
some of the dynamical memory allocation is implemented by Cray pointers that connect a variable
with storage that is allocated by a suitable function written in C. A typical use of Cray pointers is
given by the following code fragment:

real x(dim)
pointer (xptr,x)
xptr = ewdmalloc(dim*fsize)

C The array x(1:dim) is accessible here.
...
call ewdfree(xptr)

Here, the dimension dim of the array x is not known at compile time, but read in from a
configuration file at run time. The second line declares the variable xptr to be a pointer to the
array x. The C code ewdmalloc allocates storage for an array of a certain size and returns the
address of its first element. Deallocation of that storage is carried out by the C code ewdfree.

The code fragment generated by the AD forward mode when differentiating with respect to a
single scalar parameter like viscosity is then given by

real x(dim), g_x(dim)
pointer (xptr,x)
pointer (g_xptr,g_x)
xptr = ewdmalloc(dim*fsize)
g_xptr = ewdmalloc(dim*fsize)

C The arrays x(1:dim) and g_x(1:dim) are accessible here.
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...
call ewdfree(xptr)
call ewdfree(g_xptr)

That is, the derivative variable g xptr is treated in the same way as the corresponding original
variable xptr. In addition, all pointer assignments that are used, for instance when copying arrays
that were generated this way, have to be transformed in such a way that the data dependence
analysis is not violated.

Cray pointers are transformed by a script before passing the resulting Fortran code to the AD
tool Adifor [33] that generates the code to compute ��̇/��.

5. NUMERICAL RESULTS

5.1. Validation of AD-generated derivatives

In order to verify the correctness of derivatives generated with the AD transformation of XNS, we
set up a simple test case for which analytic derivatives are known. The test case was also taken as
a reference to determine a suitable mesh resolution for the sensitivity analysis of an artificial graft
in Section 5.2.

We consider purely pressure-driven flow in a 3×2 rectangle where no-slip boundary conditions
are imposed on the upper and lower wall. Furthermore, the velocity in the vertical direction is set
to zero, at both inflow and outflow boundary.

Prescribing a fixed pressure head at the outflow results in a steady, parabolic flow profile. Without
loss of generality, we can choose to prescribe the full pressure head at the outflow boundary as
shown along with the other boundary conditions in Figure 3. Analytic expressions for velocity and
pressure were previously derived in Section 2.2.

We would like the analytic test case to resemble flow conditions in the idealized graft geometry
used in the work of Abraham [8], which was briefly presented in Section 3.1. Simulations are carried
out using a Newtonian fluid model with kinematic viscosity set to �=0.0331 so as to emulate
fluid properties of blood that were discussed in Section 2.1. The Reynolds number is determined

Figure 3. Boundary conditions shown for mesh with 1200 elements.
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by inflow height, maximum inflow velocity and viscosity. Inserting the analytic expression for
velocity (for ȳ=2, we have umax=uc) yields

Re= 1

3

pd
�2

(10)

A flow with Reynolds number 300 will therefore necessitate a pressure head of

pd=900�2=0.986 (11)

We use this setting for validating the code obtained from XNS through AD as described in
Section 4.2. The AD transformation of the original code will be referred to as XNS.AD from
now on. The shear rate derivative with respect to viscosity is computed both with AD and divided
differences (DD) and compared with analytic values.

From the analytic, parabolic velocity profile (7), we have uc= 1
3 (pd/�) and we obtain the analytic

shear rate derivative with respect to viscosity

��̇

��
= �

��

∣∣∣∣�u�y
∣∣∣∣

= �
��

|2uc(1− y)|

=

⎧⎪⎪⎨
⎪⎪⎩

1

�2
1

3
pd(1− y), y�1

− 1

�2
1

3
pd(1− y), y<1

= −Re|(1− y)| (12)

Note that XNS.AD computes both shear rate and its derivative on a discrete level at the center of
each element. For this reason, the continuous expression (12) is used to provide analytic values
on an element level basis as well.

The mesh refinement study aims to determine a mesh resolution at which XNS.AD is capable
of computing shear rate derivatives with acceptable precision. The initial resolution features 10
rectangular elements per length unit where each square is divided into two triangles resulting in
a mesh size of 1200 elements. In each refinement step the number of elements per length unit is
doubled. For each step, the relative difference between analytic and AD shear rate derivative is
computed on each element as is exemplarily shown for a 19 200 element mesh in Figure 4. The
values of the shear rate derivative are close to zero along the center line in x-direction and cause
an exceptionally high relative error for elements adjacent to the center line compared with the rest
of the domain.
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Figure 4. Mesh with 19 200 elements. Relative difference between analytic and AD shear rate derivative.

Table I. Mesh refinement study. Average absolute (columns 2–4) and relative (columns 5–7) errors between
analytic, AD and DD shear rate derivatives. Relative errors in %.

Mesh size ĒAD/ana ĒDD/ana ĒDD/AD ĒAD/ana
rel ĒDD/ana

rel ĒAD/DD
rel

30×20×2=1200 3.4202 3.4202 1.5008 ·10−5 5.1164 5.1164 2.1869 ·10−7

60×40×2=4800 1.6855 1.6855 8.5012 ·10−5 2.9362 2.9363 1.2635 ·10−6

120×80×2=19200 0.8377 0.8377 1.6592 ·10−4 1.6596 1.6597 3.3960 ·10−6

As a measure for accuracy of the derivative over the whole domain, we take the average of the
absolute error and the relative error over all elements i=1, . . . ,ne. The errors between AD and
analytic values, for example, are defined as

ĒAD/ana := 1

ne

∑
i

|(��̇/��)ADi −(��̇/��)anai |

ĒAD/ana
rel := 1

ne

∑
i

|(��̇/��)ADi −(��̇/��)anai |
|(��̇/��)anai |

(13)

and similarly for derivatives computed with DD with a step size of 10−8. Table I shows that the
average error in the computation of the AD shear rate derivative is roughly reduced by a factor
of two with each refinement step and AD derivatives approach analytic values as the mesh size is
increased. DD provide additional evidence of the correctness of XNS.AD code. All computations
were carried out on a single CPU of a Intel Harpertown E5450 Xeon node with a total of eight
cores at 3000MHz and 16GB memory.

For additional validation we compare analytic, AD and DD values of the maximum absolute
shear rate derivative for three different mesh resolutions. The results are presented in Table II.
Owing to evaluation at element centers, even analytic values will not be as high as the maximum
absolute nodal value of 300 that results from (12). Nevertheless, AD values approach the analytic
derivative values with increasing mesh size in the same way as it could be observed for the average
errors in Table I.
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Table II. Mesh refinement study. Comparison of maximum absolute shear rate
derivative for analytic, AD and DD derivatives.

max��̇/��

Mesh size Analytic AD DD

30×20×2=1200 289.986 286.788 286.788
60×40×2=4800 294.985 293.372 293.372
120×80×2=19200 297.485 296.676 296.678

Concluding the analysis, we deduce that a mesh with 4800 elements and a relative error below
3% constitutes a good compromise between precision and computation time. Even though the latter
is not an issue for the simple rectangular test case, a resolution of 40 elements for the parabolic
inflow profile will result in computationally expensive meshes for the artificial graft sensitivity
analysis, which makes it unfavorable to use an even higher resolution to gain precision.

5.2. Sensitivity analysis of shear rate in artificial grafts

The dependence of optimization results on the constitutive fluid model indicates the value of an
investigation of the sensitivity of optimal shapes not only by carrying out simulations, but by
computing derivatives of the optimal solution with respect to viscosity and graft diameter, for
example. A sensitivity analysis choosing the first of the two ideally should predict the elevated
sensitivity for the wide bypass at high Reynolds number.

However, computing derivatives of optimal shape, e.g. with respect to viscosity, requires differ-
entiation through the entire optimization framework including Navier–Stokes equations and their
adjoint, mesh update routines, and—depending on the choice of AD technology—the optimizer.
While obtaining and combining this sequence of derivatives analytically is an extremely arduous
and difficult task, AD provides a convenient and accurate way to solve this problem. The first step
in that direction is to compute the AD-based derivative of the forward solution, i.e. applying AD
to XNS as described in Section 4.2. Even though one cannot obtain sensitivities of optimal shapes
this way, one can analyze the sensitivity of quantities derived from the forward solution that have
significant influence on the optimization process.

The quantity of our interest for the remainder of this section will be shear rate and its derivative
with respect to viscosity, because it directly affects the optimization outcome through the objective
function (8). The simulations with XNS.AD were run using the Newtonian fluid model for blood,
which means that the shear rate derivative will represent sensitivity at the prescribed viscosity
�=0.0331. Here, the limitations of taking derivatives with respect to viscosity to predict the
dependence of the solution (or the optimal shapes) on the constitutive model is clearly seen. Using
modified Cross model in the sensitivity analysis would add no benefit because computing derivatives
means considering a constant variation over the whole domain, while viscosity changes can be
different for each node when switching from the Newtonian to the generalized Newtonian model.

Once the derivative of shear rate has been computed, one can easily obtain the derivative of
squared shear rate as well by applying chain rule as part of the postprocessing procedure. This
immediately provides the sensitivity of the objective function with respect to viscosity.

�(�̇2)

��
=2�̇

��̇

��
(14)
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Figure 5. AD derivative of squared shear rate with respect to viscosity for Re=300. For a better
perception of the spatial distribution, the color lookup table is scaled down. The actual data range of
��̇/�� is [−1.336 ·107, 5.847 ·105] for narrow and [−1.298 ·107, 3.349 ·105] for wide graft, displayed

at top and bottom, respectively.

Since a parabolic velocity profile is prescribed at the inflow boundary of both the rectangle and the
graft, the conclusions drawn in the previous section can be used to build a mesh for the artificial
graft with a suitable resolution. The rectangular mesh with 4800 elements had 40 elements at the
inflow boundary to resolve the parabolic profile. For the graft, setting the number of elements at
the inflow to 40 and keeping the same distance between nodes at the other boundaries results in
a mesh with 119 402 elements for the narrow graft and 143 404 elements for the wide graft.

The shear rate derivative with respect to (kinematic) viscosity is computed for Reynolds numbers
50 and 300. Using (14), the derivative of squared shear rate is computed as a measure for the
sensitivity of the objective function. The results are shown in Figures 5 and 6. By scaling down
the color lookup table, the regions of high sensitivity are highlighted without losing too much
information, because ��̇/�� is in the lookup table’s range anyway for most of the elements. For
Re=300 this is true for about 92% of the elements of the wide and 87% of the narrow graft,
respectively. These percentages are even higher for Re=50 with 92% and 98%, respectively.

The alternating patterns of increasing and decreasing derivative values through a section of the
graft in flow direction are produced by the changes in the flow field. At higher viscosity, the flow
inertia effects are reduced and the velocity profile in the graft is shifted toward the upper bypass
boundary. This shift causes the alternating pattern that is more distinct for higher Reynolds number
(Figure 5) than for lower (Figure 6) due to a higher potential for change at higher velocities.
However, comparing narrow and wide bypass diameter reveals no significant characteristics that
would distinguish the wide graft at high Reynolds number from the other cases as might have
been expected from Abraham’s observations.

As a scalar measure for sensitivity, the integral over both the derivative of squared shear rate
and its absolute value are computed, see Table III. The former equals the derivative of the objective
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Figure 6. AD derivative of squared shear rate with respect to viscosity for Re=50. For a better
perception of the spatial distribution, the color lookup table is scaled down. The actual data range of
��̇/�� is [−1.092 ·105, 4.668 ·103] for narrow and [−0.853 ·105, 2.636 ·103] for wide graft, displayed

at top and bottom, respectively.

Table III. Integrals as a measure for sensitivity.

Re=300 Re=50

Narrow Wide Narrow Wide
∫
(��̇2/��) −510842 −479169 −2142 −1206∫ |(��̇2/��)| 818657 701278 4314 2489

function (8) with respect to viscosity, whereas in the latter cancelation of values with opposing
sign is avoided and, thus, an overall sensitivity is retained.

The scalar sensitivity measures in Table III do not identify the wide bypass geometry at high
inflow velocity as a special case either. The sensitivity for high Reynolds number is significantly
higher, and the sensitivity ratio of narrow and wide bypass goes down from about 1.7 for Re=50
to about 1.2 for Re=300.

In conclusion, computing derivatives of the flow solution (and related quantities like shear rate)
with respect to viscosity using XNS.AD could not reveal the sensitivity of the optimal shape to the
fluid model as reported in Abraham’s work. Taking the derivatives at a fixed viscosity corresponds
to varying viscosity in the same way for the whole domain while in generalized Newtonian fluid
models, like the modified Cross model, viscosity might be different for each element. This could be
one of the reasons why computing an overall sensitivity for the forward solution of Navier–Stokes
equations is not able to capture the effects of the constitutive model on the optimized graft shape.
The results of our analysis suggest that one actually needs to compute derivatives of the entire
optimization chain.
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6. SUMMARY AND OUTLOOK

The contributions of this paper are as follows. AD was successfully applied to a complex flow
solver resulting in a transformed code that can be used to compute derivatives with respect to
viscosity. AD-generated shear rate derivatives were validated against analytic values for pressure-
driven flow in a 2D rectangle. This test case was also used to find a suitable mesh resolution for
parabolic inflow profiles. For artificial bypass grafts, Abraham [8] carried out a shape optimization
study that showed an influence of the constitutive model for blood on the optimization outcome in
case of a wide bypass at Reynolds number 300. Using the same setting, we investigated whether
the shear rate derivative with respect to viscosity can expose this sensitivity of the optimized shape
beforehand. This turned out to be not the case suggesting that a sensitivity analysis of the forward
solution alone is not sufficient to predict sensitivity of the whole optimization process.

This observation clearly pinpoints the next steps that should be taken. AD should be applied
to the entire optimization framework, which would enable to actually compute a sensitivity of
the optimal shape. Another issue that will be addressed in future work is to overcome limitations
given by the parametrization of the bypass center line that restricts the set of admissible shapes
in the optimization. The sensitivity with respect to the constitutive blood model might be affected
by these limitations.
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